60. Die vaporometrische (thermoelektrische) Molekulargewichtsbestimmung

Teil IV [1]¹):

Theoretische Behandlung der Messapparatur

von Ch. Chylewski und W. Simon

(9. I. 64)

1. Einleitung, Prinzip der Vaporometrie. Die Vaporometrie ist eine auf Beobachtungen von HILL [2] basierende Mikromethode zur Bestimmung des Molekulargewichtes nichtflüchtiger Substanzen. Sie beruht darauf, dass in einem genau thermostatierten, mit dem Dampf des Lösungsmittels gesättigten Raume (Zelle) eine Probe reinen Lösungsmittels (Referenz, Index r) sowie eine Probe der Lösung der Substanz im selben Lösungsmittel (Index l) ausgesetzt werden. Entsprechend dem RAOULT'schen Gesetz ist der Dampfdruck der Lösung kleiner als jener des Lösungsmittels, und es kondensiert sich somit Lösungsmittel in ihr. Dadurch wird die Lösung aufgewärmt, und zwischen Lösungsmittel- und Lösungsprobe stellt sich eine Temperaturdifferenz ein, die sich proportional zur Molalität der Lösung erweist:

$$AT_{lr} = d \cdot m \tag{1}$$

 AT_{1r} : Temperaturdifferenz zwischen Lösungs- und Lösungsmittel-Probe [grd],

d: vaporometrische Konstante [grd kg mol⁻¹],

m: Molalität der Substanzlösung [mol kg⁻¹].

Die Methodik wurde früher als «thermoelektrische Molekulargewichtsbestimmung» bezeichnet [3]. Diese Bezeichnung ist nicht mehr gerechtfertigt, da heute im allgemeinen anstelle der früher eingesetzten Thermoelemente Thermistoren [4] zur Temperaturmessung Verwendung finden.

Seit kurzem sind vaporometrische Apparaturen im Handel erhältlich²). Die grössere Verbreitung, die diese Apparaturen zweifellos der Vaporometrie bringen werden, schafft das Bedürfnis nach einer umfassenden Theorie des Vaporometers, die es gestattet, das Verhalten bestehender Apparaturen zu beurteilen, Fehler bei der Bedienung auszumerzen, die Grenzen der Anwendbarkeit aufzuzeigen und schlieslich bei der Neuentwicklung von Vaporometern eine optimale Wahl der apparativen Parameter zu ermöglichen.

Im folgenden sollen die früheren theoretischen Betrachtungen [1] weiter ausgebaut und die aus der erweiterten Theorie gezogenen Schlüsse mit experimentellen Ergebnissen verglichen werden.

¹) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 526.

²) «Osmometer» der Firma MECHROLAB INC., Mountain View, Calif.; «Molecular Weight Apparatus Mod. 12» der Firma ARTHUR H. THOMAS CO., Philadelphia, Pa.; in Vorbereitung befindet sich ein Vaporometer der Firma HITACHI PERKIN-ELMER LTD., Tokyo.

2. Berechnung der vaporometrischen Konstanten. Fig. 1 stellt das den Berechnungen zugrunde liegende Modell dar. In der zylindrischen Zelle ist der hohle zylindrische Thermistorschaft, an dessen unterem Ende der Tropfen hängt, konzentrisch angeordnet. Die als eigentlicher Thermistor wirkende Spinellperle, zu der als elektrische Zuleitung zwei Platindrähtchen führen, habe die Temperatur des Tropfens. Die Temperaturdifferenz zwischen Tropfen und Zelle wird einerseits für die Molalität Null, andererseits für die Molalität *m* berechnet. Es gilt die Beziehung:

$$AT_{lr} = \Delta T_{lz} - AT_{rz} \tag{2}$$

 AT_{L2} : Temperaturdifferenz zwischen Lösungsprobe und Zelle [grd], AT_{L2} : Temperaturdifferenz zwischen Lösungsmittelprobe und Zelle [grd].

Die der Lösung und Referenz entsprechenden Thermistoren werden im allgemeinen in einer Brückenschaltung (Fig. 2) verwendet, so dass das gemessene Brückensignal ein Mass für die Grösse ΔT_{ir} darstellt³). Bei der Berechnung von ΔT_{ir} nach (2) sind geringe Wechselwirkungen zwischen den beiden als Tropfen vorliegenden Proben vernachlässigt. Zur Ermittlung der vaporometrischen Konstanten wird eine Wärmebilanz des am Thermistor hängenden Tropfens aufgestellt. Sie gilt für den stationä-

ren Zustand, in welchem die Tropfentemperatur zeitlich unverändert bleiben soll.

Fig. 1. Modell des Vaporometers

Fig. 2. Elektrische Schaltung der Widerstandsmessbrüche

³) Bei der in dieser Arbeit betrachteten Apparatur wurde die Spannung U_n durch ein zu einem der Thermistoren in Serie geschaltetes Pontentiometer auf Null kompensiert und das ΔT_{lr} entsprechende ΔR am Potentiometer abgelesen. Nach (27) könnte ΔR auch ohne Kompensation aus der genau gemessenen Spannung U_n berechnet werden.

Elektrische Aufheizung des Tropfens: Durch den Thermistor fliesst der elektrische Strom I_{th} , der dem Tropfen die Wärmeleistung \dot{Q}_e zuführt:

$$\dot{Q}_e = I_{th}^2 \cdot R_{th} \cdot F_1 \tag{3}$$

 R_{th} : Widerstand des Thermistors [Ohm], F_1 : Einheiten-Umwandlungsfaktor [cal W⁻¹ s⁻¹].

Kondensation von Lösungsmittel: Pro Zeiteinheit kondensiert auf dem Lösungstropfen die Lösungsmittelmenge:

$$\dot{m}_L = \frac{S \cdot M \cdot D \cdot F_2 \cdot I_p}{\tilde{R} \cdot T_z} \tag{4}$$

 \dot{m}_L : Massenstrom der Lösungsmittelkondensation [g s⁻¹],

- S: Formfaktor nach LANGMUIR [5] [cm],
- M: Molekulargewicht des Lösungsmittels [g mol-1],
- D: Diffusionskonstante des Lösungsmitteldampfes in Luft $[\mathrm{cm}^2 \ \mathrm{s}^{-1}]$,
- F_2 : Einheiten-Umwandlungsfaktor [cal cm⁻³ Torr⁻¹],
- Ap: Dampfdruckdifferenz zwischen dem Lösungsmittel in der Zelle und dem Tropfen [Torr],
- R: allgemeine Gaskonstante [cal mol⁻¹ grd⁻¹],
- T_z : Zellentemperatur [° K].

Die Kondensation führt dem Tropfen die Wärmeleistung \dot{Q}_k zu:

$$\hat{Q}_k = L \cdot \dot{m}$$
 (5)

L: Verdampfungswärme des Lösungsmittels [cal g⁻¹].

Nach den Gesetzen von RAOULT und von CLAUSIUS-CLAPEYRON ist

$$Ap = -\frac{M \cdot L \cdot p \cdot AT_{lz}}{R \cdot T_{z}^{2}} + m \cdot M \cdot 10^{-3} \cdot p$$
(6)

p: Dampfdruck des Lösungsmittels bei der Temperatur T_z [Torr].

Durch Zusammenfassung der Gleichungen (4), (5) und (6) ergibt sich:

$$\dot{Q}_{k} = \frac{S \cdot M^{2} \cdot D \cdot L \cdot p \cdot F_{2}}{R \cdot T_{z}} \left(\frac{m \cdot 10^{-3}}{A T_{lz}} - \frac{L}{R T_{z}^{-2}} \right) \cdot \Delta T_{lz}.$$
(7)

Wärmeleitung durch die Gasphase: Durch Wärmeleitung der Gasphase geht die Wärmeleistung \dot{Q}_{g} verloren:

$$Q_{g} = -S \cdot k_{g} \cdot AT_{lz}$$
(8)

 k_g : Wärmeleitzahl der Gasphase [cal s⁻¹ cm⁻¹ grd⁻¹].

Wärmeverlust durch Strahlung des Tropfens: Die vom Tropfen abgestrahlte Leistung ist:

 $\dot{Q}_s = -4 \cdot \sigma \cdot A_{lr} \cdot \varepsilon_{lr} \cdot T_z^3 \cdot \Delta T_{lz}$ ⁽⁹⁾

 σ : Stefan'sche Konstante [cal s⁻¹ cm⁻² grd⁻⁴],

 A_{tr} : Tropfenoberfläche [em²],

 ε_{tr} : Emissivität der Tropfenoberfläche.

Wärmeverlust durch die Zuführungsdrähte zum Thermistor: Durch die Zuführungsdrähte zum Thermistor geht die Wärmeleistung \dot{Q}_a verloren:

$$\dot{Q}_d = -\frac{2 \cdot \pi \cdot r_d^2 \cdot k_d}{l_d} \cdot \varDelta T_{Iz} \tag{10}$$

- r_d : Drahtradius [cm],
- l_d : Drahtlänge [cm],
- k_d : Wärmeleitzahl des Drahtmetalls [cal s⁻¹ cm⁻¹ grd⁺¹].

Wärmeverluste durch den Thermistorschaft: Der totale Wärmeverlust durch den Thermistorschaft beträgt [1] (vgl. Fig. 1):

$$Q_{th} = -k_{th} \cdot A_{th} \cdot q \cdot \coth\left(q \cdot l_{th}\right) \cdot \varDelta T_{lz}$$
⁽¹¹⁾

mit
$$q = \sqrt{\frac{\frac{2 \cdot \pi \cdot k_g}{\ln (r_z/r_{th})} + 8 \cdot \pi \cdot r_{th} \cdot \sigma \cdot \varepsilon_{th} \cdot 1T_z^3}{k_{th} \cdot A_{th}}}$$
 (12)

 k_{th} : Wärmeleitzahl des Thermistorschaftglases [cal s⁻¹ cm⁻¹ grd⁻¹],

Ath: Glasquerschnitt des Thermistorschaftes [cm²],

 r_z : Zellenradius [cm],

 r_{th} : Aussenradius des Thermistorschaftes [cm],

 ε_{th} : Emissivität des Thermistorschaftglases.

Wärmebilanz des Tropfens: Im stationären Zustand ist die Summe von Wärmegewinnen und Wärmeverlusten gleich Null:

$$\dot{Q}_{g} + \dot{Q}_{k} + \dot{Q}_{g} + \dot{Q}_{s} + \dot{Q}_{d} + \dot{Q}_{th} = 0.$$
 (13)

Zur Vereinfachung werden die folgenden Symbole eingeführt:

$$a = \frac{S \cdot M^2 \cdot D \cdot L \cdot p \cdot F_2}{R \cdot T_2}$$
(14)

$$b = \frac{L}{R \cdot T_z^2} \tag{15}$$

$$c_{\mu} = S \cdot k_{\mu} \tag{16}$$

$$c_s = 4 \cdot \sigma \cdot A_{tr} \cdot \varepsilon_{tr} \cdot T_z^3 \tag{17}$$

$$c_d = \frac{2 \cdot \pi \cdot k_d \cdot r_d^2}{l_d} \tag{18}$$

$$c_{th} = q \cdot k_{th} \cdot A_{th} \cdot \coth\left(q \cdot l_{th}\right). \tag{19}$$

Mit diesen Symbolen lässt sich (13) schreiben als:

$$\Delta T_{lz} = \frac{\dot{Q}_{g} + a \cdot m \cdot 10^{-3}}{a \cdot b + c_{g} + c_{s} + c_{d} + c_{lh}}.$$
(20)

Bei der Molalität Null resultiert ΔT_{r_2} :

$$\Delta T_{rz} = \frac{\hat{Q}_e}{a \cdot b + c_g + c_s + c_d + c_{th}} .$$
⁽²¹⁾

Einsetzen von (20) und (21) in (2) führt zu der bereits bekannten Gleichung (22) [1], in der das Glied Q_e nicht mehr auttritt:

$$d = \frac{-1T_{lr}}{m} = \frac{a \cdot 10^{-3}}{a \cdot b + c_g + c_s + c_d + c_{th}}.$$
 (22)

(22) gilt nur für den Spezialfall, in welchem Lösungs- und Lösungsmittel-Tropfen gleich gross sind.

3. Temperaturabhängigkeit der gemessenen Signale. Die vaporometrischen Konstanten d (vgl. Gl. (1)) wurden für 7 Lösungsmittel als Funktionen der Temperatur berechnet (Fig. 3). Sie entsprechen Apparaturen analog zu jener, die trüher ausführlich beschrieben wurde [6]. Allgemein werden die Konstanten mit steigender Temperatur grösser, was vor allem dem Einfluss des Termes b (vgl. (15)) zuzuschreiben ist.

Die in die Berechnungen eingehenden Konstanten sind an einer anderen Stelle zusammengestellt [1] [7], und die den verschiedenen Temperaturen entsprechenden Lösungsmitteldaten wurden aus tabellierten Werten [8] nach gebräuchlichen Formeln [9] interpoliert.

Der Widerstand R_{th} eines Thermistors gehorcht in einem beschränkten Temperaturbereich der Gleichung [10]:

$$R_{Ih} = R_0 \cdot e^{B\left(\frac{1}{T} - \frac{1}{T_0}\right)}$$
(23)

 R_0 : Thermistorwiderstand bei der Temperatur T_0 [Ohm],

B: Thermistorkonstante [grd].

Durch Ableiten von (23) nach der Temperatur ergibt sich für den Temperaturkoeffizienten des Widerstandes:

Fig. 3. Berechnete Abhängigkeit der vaporoten k von der Temperatur metrischen Konstanten von der Temperatur 1 Wasser, 2 Methanol, 3 Toluol, 4 Benzol, 5 Äthylacetat, 6 Methylenchlorid, 7 Tetrachlorkohlenstoff

In dem kleinen Temperaturbereich, welcher ΔT_{lr} entspricht, kann der Temperaturkoeffizient des Thermistorwiderstandes als konstant angesehen werden. Die beobachtete Widerstandsänderung ΔR ist daher nach (1) zur Molalität der Lösung proportional:

$$AR = -k \cdot m \tag{25}$$

k: Konstante [Ohm kg mol⁻¹]. (24)

Dabei ist nach (23) und (24):

$$k = d \cdot R_0 \cdot e^{B\left(\frac{1}{T} - \frac{1}{T_0}\right)} \cdot \frac{B}{T^2}.$$
(26)

Die nach (26) berechneten Werte für k sind in Fig. 4 als Funktion der Temperatur dargestellt. Die Konstanten k nehmen allgemein mit steigender Temperatur ab, weil die Verringerung der Thermistorempfindlichkeit sich stärker auswirkt als die Zunahme der vaporometrischen Konstanten d.

Bei einer Zellentemperatur von 30° ändern sich die Konstanten k um 2–3% bei einer Temperaturänderung um 1°. Daher genügt im praktischen Betrieb eine langfristige Stabilität der Zellentemperatur von $\pm 0,1°$. Voraussetzung ist dabei eine genügend kleine Differenz der Temperaturkoeftizienten der beiden Thermistorwiderstände. Diese Differenz lässt sich jedoch dadurch ausreichend verkleinern, dass zum Thermistor mit dem grösseren Temperaturkoeffizienten ein geeigneter Widerstand von der Grössenordnung 100 MOhm parallel geschaltet wird.

Die elektrische Kompensationsgenauigkeit für WHEATSTONE-Brücken, wie sie in Vaporometern verwendet werden (Fig. 2), hängt von der Brückenstromstärke ab. Wenn $R_1 = R_2$ ist, gilt die Beziehung:

$$U_{\mu} = U_{b} \cdot \left(\frac{1}{2} - \frac{R_{th}}{2 \cdot R_{th} + \Delta R}\right)$$
(27)

 U_n : Spannung am Nulldetektor der Brücke bei unendlich grossem Eingangswiderstand [V], U_b : Speisespannung der Brücke [V].

Zur Erhöhung der Kompensationsgenauigkeit darf die Brückenspeisespannung nicht beliebig gesteigert werden, da die im Thermistor freigesetzte Wärmeleistung \dot{Q}_e ein gewisses Mass nicht überschreiten sollte. Eine übermässige Erwärmung der Thermistoren würde zu einer sehr starken Abhängigkeit des Signals von der Tropfengrösse (vgl. unten) und zu Konvektion in der Zelle führen. Die Thermistor-Heizleistung sei daher auf 3,6 · 10⁻⁶ cal s⁻¹ festgesetzt, was einem Brückenstrom von 30 μ A bei einer Arbeitstemperatur von 30° entspricht, wobei die verwendeten Thermistoren⁴) einen Widerstand von ca. 67 KOhm aufweisen.

Die Bedingung der konstanten Thermistor-Heizleistung lautet:

$$U_b = 2\sqrt[4]{R_{th}} \cdot \dot{Q}_e/F_1 \,. \tag{28}$$

Als Mass für die Empfindlichkeit des Vaporometers gelte jene Spannung am Nulldetektor, die durch eine 1-molale Lösung in Berührung mit dem Lösungsthermistor erzeugt wird, wenn die in einem Thermistor freigesetzte elektrische Wärmeleistung 3,6 · 10⁻⁶ cal s⁻¹ beträgt. Nach dieser Definition ergibt sich durch Zusammenfassen der Ausdrücke (26), (27) und (28) unter Vernachlässigung von ΔR gegenüber 2 · R_{Lh} :

$$E = \frac{1}{2} \cdot d \cdot \frac{B}{T^2} \sqrt{R_{th} \cdot \dot{Q}_e/F_1}$$
(29)

E: = Empfindlichkeit des Vaporometers [V kg mol⁻¹].

520

⁴⁾ Thermistor Stantel F15 MP der Firma STANDARD TELEPHONES AND CABLES LTD., Sidcup, Kent, England. Der Widerstand dieser Thermistoren beträgt bei 20° etwa 100 KOhm; die Thermistorkonstante B (vgl. Gl. (23)) hat einen Wert um 4000 grd.

Der Thermistorwiderstand R_{ih} ist für jede Zellentemperatur nach (23) zu berechnen und in (29) einzusetzen.

In Fig. 5 sind die so berechneten Empfindlichkeiten für verschiedene Lösungsmittel in Funktion der Temperatur aufgetragen. Die Empfindlichkeit durchläuft bei

Fig. 5. Derechnete Abhangigkeit der Empfishe lichkeit von der Temperatur (Konstante Thermistor-Heizleistung: $3,6 \cdot 10^{-6}$ cal s⁻¹)

Fig. 6. Temperatur maximaler Empfindlichkeit als Funktion der Siedetemperatur

1 Wasser, 2 Methanol, 3 Toluol, 4 Benzol, 5 Äthylacetat, 6 Methylenchlorid, 7 Tetrachlorkohlenstoff

jedem Lösungsmittel ein Maximum, das etwa 65° unter dem normalen Siedepunkt des betreffenden Lösungsmittels liegt (Fig. 6). Die Temperatur maximaler Empfindlichkeit kann durch Ableiten von (29) nach der Temperatur berechnet werden:

$$T_{E_{max}} = \sqrt{\frac{2 \cdot B \cdot d}{3 \cdot \frac{d(d)}{dT}}} \,. \tag{30}$$

Da die Grössen d und d(d)/dT von der Temperatur abhängen, muss (30) nach einem iterativen Verfahren gelöst werden.

Aus (30) geht hervor, dass die Temperatur maximaler Empfindlichkeit weder vom Brückenstrom noch vom Thermistorwiderstand abhängt.

4. Abhängigkeit des Signals von der Tropfengrösse. Im allgemeinen weichen die Grössen der Lösungs- und Lösungsmittel-Tropfen voneinander ab. Nach der üblichen Arbeitstechnik wird der Referenztropfen seltener als der Lösungstropfen erneuert. Dementsprechend ist es sinnvoll, die Abhängigkeit des gemessenen Signals von der Grösse des Lösungstropfens bei konstanter Grösse des Referenztropfens zu untersuchen.

Sind Lösungs- und Lösungsmittel-Tropfen nicht gleich gross, so werden die Nenner von (20) und (21) verschieden, da die Tropfengrösse in die Glieder *a* (über *S*), c_g und c_s eingeht. Die berechnete Differenz $\Delta(\Delta T) = \Delta T_{lr}$ (variable Tropfengrösse) $-\Delta T_{lr}$ (fixierte Tropfengrösse) ist in Fig. 7 für drei Molalitäten der Substanzlösung und für Methyl-isobutyl-keton als Lösungsmittel, bezogen auf eine fixierte Tropfengrösse von 1,9 cm (Tropfenlänge), aufgetragen. Als unabhängige Variable ist die

Fig. 7. Berechnete Abhängigkeit des Signals von der Tropfenlänge l_{tr} bei Methyl-isobutyl-keton a) reines Lösungsmittel b) 0,035 M Lösung c) 0,05 M Lösung

Fig. 8. Experimentell gefundene Abhängigkeit des Signals von der Tropfengrösse bei Methylisobutyl-keton

Kurve I: reines Lösungsmittel; Kurve II: 0,05 M Lösung

a: Film, b: kleiner Tropfen, c: mittlerer Tropfen, d: grosser Tropfen, e: sehr grosser Tropfen

 $\Delta(\Delta R) = \Delta R$ (variable Tropfengrösse) $-\Delta R$ (fixierte Tropfengrösse) $1(\Delta R)$ ist bezogen auf die maximal mögliche Tropfenlänge des Tropfens fixierter Grösse $1 \ \Omega \sim 3.3 \cdot 10^{-4}$ grd [6]

Tropfenlänge gewählt worden, da der Tropfenradius kein eindeutiges Mass für die Tropfengrösse darstellt, sobald Tropfen zugelassen werden, die kürzer als eine Halbkugel sind. Ist die Konzentration der Lösung Null, so verkleinert sich bei abnehmender Tropfengrösse die Fläche, von welcher der Tropfen die elektrisch erzeugte Wärme abgeben kann, und die Temperatur des Tropfens steigt (Kurve a). Bei einer Molalität der Lösung von 0,05 mol kg⁻¹ nimmt mit abnehmender Tropfenoberfläche die Wärmezufuhr durch Kondensation von Lösungsmittel schneller ab als die Wärmeverluste, deren auf den Thermistorschaft entfallender Anteil konstant bleibt. Daher nimmt hier die Temperatur des Lösungstropfens mit der Tropfengrösse ab (Kurve c). Dazwischen existiert ein Molalitätsbereich um 0,035 mol kg⁻¹, in welchem sich die beiden Einflüsse mindestens teilweise aufheben (Kurve b).

Eine experimentelle Nachprüfung konnte nicht mehr als eine qualitative Bestätigung der theoretischen Betrachtungen bringen, da besonders bei kleinen Tropfen die Tropfenform stark von der Kugelgestalt abweicht. Ausserdem wird die Messung der durch Schwankungen der Tropfengrösse bedingten kleinen Temperaturdifferenzen durch andere Fehlerquellen im Vaporometer gestört. Immerhin resultiert eine Abhängigkeit mit dem erwarteten Vorzeichen in der erwarteten Grössenordnung (Fig. 8).

Für die Praxis der Molekulargewichtsbestimmung ergibt sich daraus die Konsequenz, dass bei Messungen mit Genauigkeiten der Grössenordnung von 0,5% die Tropfenlänge auf etwa 5% konstant gehalten werden muss. Da die Abhängigkeit des Signals von der Tropfengrösse durch Molalität, Brückenstrom, Form des Thermistorschaftes und Lösungsmitteldaten bestimmt wird, sind gewisse Widersprüche zwischen den Angaben verschiedener Autoren [3] [4] [11] verständlich.

5. Konzentrationsänderung des Lösungstropfens während der Messung. Soweit wurde vorausgesetzt, dass die Molalität der Substanzlösung während der Messung unverändert bleibt. In Wirklichkeit nimmt diese Molalität im allgemeinen infolge der Kondensation von Lösungsmittel auf dem Lösungstropfen stetig ab.

Nach (5) und (7) ist die pro Zeiteinheit auf dem Tropfen kondensierende Lösungsmittelmenge:

$$\dot{m}_L = \frac{a}{L} \left(m \cdot 10^{-3} - b \cdot \varDelta T_{lz} \right). \tag{31}$$

Dadurch ändert sich die Molalität der Lösung um:

$$\frac{\mathrm{d}m}{\mathrm{d}t} = -\frac{m \cdot \dot{m}_L}{m_{tr}} \tag{32}$$

m_{tr}: Tropfenmasse [g].

Dieser Molalitätsänderung entspricht nach (1) eine Temperaturänderung:

$$\frac{\mathrm{d}\Delta T_{lz}}{\mathrm{d}t} = \frac{\mathrm{d}\Delta T_{lr}}{\mathrm{d}t} = d \cdot \frac{\mathrm{d}m}{\mathrm{d}t} = -d \cdot \frac{m \cdot \dot{m}_L}{m_{lr}}.$$
(33)

Die Ableitungen von ΔT_{lz} und ΔT_{lr} nach der Zeit sind gleich, da sich die beiden Grössen nur um den Term ΔT_{rz} unterscheiden, der von der Zeit unabhängig ist.

Die auf Grund von (20), (31) und (33) berechnete Änderungsgeschwindigkeit der Tropfentemperatur ist:

$$\frac{\mathrm{d} \cdot 1T_{lr}}{\mathrm{d}t} = \frac{d \cdot a}{m_{lr} \cdot L} \left(m^2 \cdot 10^{-3} \left[1 - \frac{a \cdot b}{a \cdot b + c_g + c_s + c_d + c_{lh}} \right] - \frac{m \cdot b \cdot \dot{Q}_e}{a \cdot b + c_g + c_s + c_d + c_{lh}} \right). \tag{34}$$

Die Verdünnungsgeschwindigkeit ist also eine quadratische Funktion der Molalität. Diese Funktion ist in Fig. 9 für das Lösungsmittel Methylenchlorid und den Brückenstrom als Parameter dargestellt. Die Tropfenmasse wurde zu 5 mg angenommen.

Die experimentell gefundenen Verdünnungsgeschwindigkeiten (Fig. 10) stimmen gut mit den berechneten überein. Es wurde jeweils die Signaländerung zwischen der 20. und 30. Minute nach der Tropfenaddition beobachtet. Das Signal änderte sich in diesem Bereiche linear mit der Zeit. Die Streuung der Punkte um die Verdünnungskurve ist vermutlich auf Schwankungen der Tropfenmasse zurückzuführen.

Soll eine Signaländerung von maximal -1% innerhalb der Zeit, die zwischen Tropfenaddition und Ablesung verstreicht (Einstellzeit), toleriert werden, so lässt sich die maximal zulässige Molalität der Substanzlösung folgendermassen berechnen:

$$-\frac{d \cdot m_{max} \cdot 10^{-2}}{\Delta t} = \frac{\mathrm{d}AT_{Ir}}{\mathrm{d}t}$$
(35)

m_{max}: maximal zulässige Molalität der Substanzlösung [mol kg⁻¹]. Einstellzeit [s]. .1t:

Wird die Grösse d $\Delta T_{tr}/dt$ aus (34) in (35) eingesetzt, so ergibt sich:

$$m_{max} = \frac{10 \cdot m_{tr} \cdot L}{4t \cdot a} + \frac{10^3 \cdot b \cdot Q_e}{a \cdot b + c_g + c_s + c_d + c_{th}} \cdot \frac{10^3 \cdot b \cdot Q_e}{1 - \frac{a \cdot b}{a \cdot b + c_g + c_s + c_d + c_{th}}}$$
(36)

Die nach (36) berechneten maximal zulässigen Molalitäten sind für verschiedene Lösungsmittel in Tab. 1 zusammengestellt. Die eingesetzten Einstellzeiten sind Erfahrungswerte. Bei der Tropfentechnik wurde die Tropfenmasse zu 12 mg, bei der

Thermistorstromstärke: a: 30 μ A; b: 15 μ A; c: 7,5 μ.\.

keiten bei einem Methylenchlorid-Film (Thermistorstromstärke: $15 \ \mu \Lambda$)

Filmtechnik zu 5 mg angenommen. Als Film wird die Flüssigkeitsmenge bezeichnet, die nach dem Abfallen eines Tropfens auf dem Thermistor zurückbleibt. Bemerkenswert ist, dass sich bei beiden Techniken ähnliche maximale Molalitäten ergeben. Dies ist darauf zurückzuführen, dass die Einstellzeiten sich etwa umgekehrt verhalten wie die Massen von Tropfen und Film.

Die Gleichung (36) kann nur angenähert richtige Ergebnisse liefern, da während der Einstellzeit die Temperatur des Lösungstropfens noch nicht dem berechneten Endwert entspricht. Ferner gilt die Berechnung nur für eine Zelle, deren Boden und Wände mit reinem Lösungsmittel bedeckt sind. Wenn sich in der Zelle eine Substanzlösung befindet, wie dies im Routinebetrieb meistens der Fall ist, so werden die zulässigen Molalitäten entsprechend grösser.

5. Verwendung verschiedener Zellenatmosphären. Früher [1] wurde die Vermutung geäussert, dass sich die vaporometrische Konstante wesentlich erhöhen liesse, wenn die Luft in der Zelle durch ein Gas mit kleinerer Wärmeleitfähigkeit ersetzt würde. Theoretische und experimentelle Ergebnisse (Tab. 2) zeigen indessen, dass sich bei Gasen wie Kohlendioxid, Luft, Helium und Wasserstoff praktisch die gleichen vaporometrischen Konstanten ergeben. Der Einfluss der Wärmeleitfähigkeit wird offensichtlich durch den der Diffusionskonstanten weitgehend aufgehoben. Einzig die Einstellzeiten werden bei den spezifisch leichteren Gasen merklich kürzer [12].

Lösungsmittel	Einstellzeit [s]		Maximale Molalität (mol kg ⁻¹)		
	Film	Troplen	Film	Tropfen	
Н,О	600	1200	0,60	0,72	
MeOH	150	360	0,45	0,45	
C _e H _e	120	300	0,10	0,10	
EtOAc	120	300	0,092	0,089	
Et,O	120	240	0,062	0,074	
cci,	120	300	0,028	0,027	
CH,CI,	60	90	0,11	0,18	
CHĈL	60	180	0.064	0,052	

Tabelle 1. Berechnete maximal zulässige Molalitäten der Probelösung

Tabelle 2. Messungen mit verschiedenen Zellengasen

			Luft	CO2	1H ₂	Не
CH ₂ Cl ₂	$\begin{cases} d_{ber} \\ d_{exp} \end{cases}$	[grd kg mol ⁻¹] [grd kg mol ⁻¹]	2,00 1,90	1,90		
AcOH	$\left\{\begin{array}{c} d_{ber} \\ d_{exp} \end{array}\right.$	[grd kg mol ⁻¹] [grd kg mol ⁻¹]	0,72	0,64	0,72	Wie in Luft [12]

SUMMARY

The influence of temperature, drop size, dilution and cell atmosphere on the signal has been calculated for vaporimetric (thermoelectric) molecular weight instruments. The results are supported by experimental data.

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich

LITERATURVERZEICHNIS

- [1] Teil III: C. TOMLINSON, CH. CHYLEWSKI & W. SIMON, Tetrahedron 19, 949 (1963).
- [2] A. V. HILL, Proc. Roy. Soc. London A 127, 9 (1930).
- [3] E. J. BALDES, J. sci. Instr. 11, 223 (1934).
- [4] A. P. BRADY, H. HUFF & J. W. McBAIN, J. physic. Colloid Chem. 55, 304 (1951).
- [5] I. LANGMUIR, E. Q. ADAMS & G. S. MEIKLE, Trans. electrochem. Soc. 24, 53 (1914).
- [6] DOROTHEE WEGMANN, C. TOMLINSON & W. SIMON, Microchemical Journal Symposium Series, Vol. II, Microchemical Techniques, University Park 1961, N. D. Cheronis ed., New York, London 1962, S. 1069.
- [7] CH. CHYLEWSKI, Diss. ETH., Zürich 1963.
- [8] International Critical Tables, Bde. 1--5, McGraw-Hill Co., New York 1925–1933; VDI-Wärmeatlas, VDI-Verlag, Düsseldorf 1953.
- [9] O. P. KHARABANDA, Nomograms for Chemical Engineers, Heywood & Co., London 1958.
- [10] R. MÜLLER & H. J. STOLTEN, Analyt. Chemistry 25, 1103 (1953).
- [11] R. R. ROEPKE, J. physic. Chemistry 46, 359 (1942); W. SIMON & C. TOMLINSON, Chimia 14, 301 (1960).
- [12] S. BRUCKENSTEIN, School of Chemistry, University of Minnesota, Minneapolis 14, Minn., Privatmitteilung.

61. Fettsäurehaltige basische Peptide mit antibakterieller Wirkung von K. Vogler, P. Lanz, P. Quitt, R. O. Studer, W. Lergier, E. Böhni und B. Fust (11. I. 64)

I. Einleitung. - Seit einer Reihe von Jahren haben wir uns auf synthetischem Wege mit der Strukturaufklärung von Polymyxin B_1 [1]¹) beschäftigt. Obwohl es bis jetzt nicht gelungen ist, die Struktur dieses Antibioticums endgültig aufzuklären [2], steht seit langem fest, dass es eine höhere Fettsäure, die (+)-6-Methyloctansäure, sowie eine Reihe von α, γ -Diaminobuttersäureresten mit freier γ -Aminogruppe enthält [3] [4]. Aus diesen Gründen können Polymyxin B_1 [4], die Polymyxine im allgemeinen [5], sowie Circulin A und B [6] in ihrer Salzform als Invertseifen aufgefasst werden. Neben ihrer cyclischen Natur und dem Gehalt an D-Aminosäuren kann ihre Wirksamkeit wohl teilweise diesem Invertseifencharakter zugeschrieben werden.

Als Weiterentwicklung auf diesem Gebiete hatten wir uns die Aufgabe gestellt, *in vivo* wirksame, einfache offenkettige Abkömmlinge dieser Substanzklasse aufzubauen [7], die technisch gut zugänglich sind und praktische Verwendung finden sollten. Ein solches Vorgehen wurde durch die Tatsache erleichtert, dass auch in der Natur antibakteriell wirksame Metaboliten aus Mikroorganismen mit offenkettiger Peptidstruktur, wie z.B. das Esperin [8] oder das Viscosin [9], aufgefunden werden

¹) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 544.